题目:
X轴上有N条线段,每条线段包括1个起点和终点。线段的重叠是这样来算的,[10 20]和[12 25]的重叠部分为[12 20]。
给出N条线段的起点和终点,从中选出2条线段,这两条线段的重叠部分是最长的。输出这个最长的距离。如果没有重叠,输出0。
思路:
1、暴力计算
依次计算两两线段之间的重叠长度,但复杂度太高
2、动态规划
假设S[n]表示n条线段中最长重叠距离,最长重叠距离只与两条线段有关,那么考虑两种情况:
1. 最长重叠距离与第n条线段无关,则最长重叠距离存在于前n-1条线段中,即S[n]=S[n-1];
2. 最长重叠距离与第n条线段有关,则最长重叠距离为第n条线段与前面n-1条线段中的最大重叠距离者,S[n]=max(overlap(segment[n],segment[i])), i=1....n-1
因此得到状态转移方程:
S[n]=0; n<=1
S[2]=overlap(segment[0],segment[1])
S[n]=max(S[n-1],max(overlap(segment[n],segment[i])))
代码:
动态规划:
#include#include #include using namespace std;typedef struct{ int start; int end;}segment;bool isShorter(const segment &s1,const segment &s2);int commonSegment(const segment &seg_a,const segment &seg_b);int findLongestSegment(const vector &segments,int size);int main(){ int n; int start,end; while(cin>>n){ vector segments(n); for(int i=0;i >start && cin>>end){ segments[i].start=start; segments[i].end=end; } } // sort by segment.end// sort(segments.begin(),segments.end(),isShorter); int maxLen; maxLen=findLongestSegment(segments,n); cout<<"Longest Length:"< < seg_b.end){ commonSeg.start=0; commonSeg.end=0; } else{ commonSeg.start=max(seg_a.start,seg_b.start); commonSeg.end=min(seg_a.end,seg_b.end); } return commonSeg.end-commonSeg.start;}int findLongestSegment(const vector &segments,int size){ vector lens(size+1); lens[0]=0; lens[1]=0; lens[2]=commonSegment(segments[0],segments[1]); int tmpLen; // size>2 // dynamic programming for(int i=3;i<=size;i++){ lens[i]=lens[i-1]; for(int j=0;j
递归方法:
#include#include #include using namespace std;typedef struct{ int start; int end;}segment;bool isShorter(const segment &s1,const segment &s2);segment commonSegment(const segment &seg_a,const segment &seg_b);int findLongestSegment(const vector &segments,int size,segment &maxSegment);int main(){ int n; int start,end; while(cin>>n){ vector segments(n); for(int i=0;i >start && cin>>end){ segments[i].start=start; segments[i].end=end; } } // sort by segment.end //sort(segments.begin(),segments.end(),isShorter); segment maxSeg; int maxLen; maxLen=findLongestSegment(segments,n,maxSeg); cout<<"Longest Length:"< < seg_b.end){ commonSeg.start=0; commonSeg.end=0; } else{ commonSeg.start=max(seg_a.start,seg_b.start); commonSeg.end=min(seg_a.end,seg_b.end); } return commonSeg;}int findLongestSegment(const vector &segments,int size,segment &maxSegment){ if(size<=1) return 0; if(size==2){ maxSegment=commonSegment(segments[0],segments[1]); return maxSegment.end-maxSegment.start; } // size>2 // recursive method int maxLen,tmpLen; segment tmpMaxSeg; maxLen=findLongestSegment(segments,size-1,tmpMaxSeg); maxSegment=tmpMaxSeg; // maxSegment=(maxSegment,commonSeg) segment commonSeg; for(int i=0;i maxLen){ maxLen=tmpLen; maxSegment=commonSeg; } } return maxSegment.end-maxSegment.start;}